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In the measurement of thermal diffusivity by the laser flash method, a tempera-
ture rise occurs in the sample as a pulsed laser hits on the sample surface. Due
to the temperature dependence of thermal diffusivity of the sample, the thermal
diffusivity corresponds to a temperature that is larger by Teff than the tempera-
ture before laser irradiation is applied. This effective temperature rise, Teff, has
been investigated by using a numerical simulation. The results indicate that the
effective temperature rise is almost equal to a maximum temperature rise, TM, of
the back surface of the sample in cases where both linear and nonlinear tem-
perature variations of thermal diffusivity are considered.

KEY WORDS: glassy carbon; laser flash method; temperature dependence;
thermal diffusivity; pulse width.

1. INTRODUCTION

The flash method proposed by Parker et al. [1] is one of the most popular
techniques for measuring the thermal diffusivity of solids. In this technique,
one side of a disk sample is irradiated by a pulsed laser or a xenon flash



lamp, and the temperature rise of its back surface is measured as a function
of time from which the thermal diffusivity value can be determined.
Front face temperature rises can be quite large for black insulating

materials. All of this energy is originally concentrated in a very thin section
and diffuses to the rest of the sample, raising the overall temperature
several degrees. The temperature rise of the sample surface is up to 100
degrees. The temperature dependence of the thermal diffusivity and the
effect of the temperature rise in the sample should be taken into account in
determining an accurate value of the thermal diffusivity using the laser
flash method. This problem can be solved by the following process [2].
First, thermal diffusivity measurements are made for a sample maintained
at constant temperature by providing a laser pulse with a different inten-
sity. Next, the experimental values of thermal diffusivity are plotted as a
function of the laser pulse intensity. The thermal diffusivity value at the
sample temperature before laser irradiation, T0, should be determined by
the extrapolating the curve to the point where the laser intensity is zero.
This process is rigorous but appears to be somewhat tedious, so that a
simple and useful procedure is strongly needed for practical reasons.
Due to the temperature dependence of the thermal diffusivity and

temperature rise of the sample, the value obtained by the laser flash
method does not agree with the value at T0. It is convenient to define an
effective temperature rise, Teff, so that the thermal diffusivity at a tempera-
ture Teff above T0 agrees with the measured data. An effective temperature
may also be defined as T0+Teff. A detailed investigation on Teff has not yet
been available, because some complex and lengthy calculation is needed to
solve a nonlinear partial differential equation with the temperature depen-
dence of the thermal diffusivity [3]. This paper presents our systematic
investigation on the effective temperature rise induced by laser irradiation
using a finite difference method and its relevance to the thermal diffusivity
value estimated from the measured temperature response curve.

2. THEORETICAL BASIS

Let us consider a finite slab with the uniform temperature distribution
of T0. The thickness and the thermal diffusivity of this slab are denoted by
d and a, respectively. A single laser pulse is absorbed uniformly by the
front surface of the slab. For this problem, the following thermal diffusion
equation (Eq. (1)) should be solved under an initial condition of pulse
heating and adiabatic boundary conditions.

“T
“t
=a
“
2T
“x2

(1)
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where t is the time, x is the distance from the front surface, and T is the
temperature.
The finite difference approximation is used to calculate the tempera-

ture response. The slab is divided into n elements with no overlapping
uniform region with same thickness of Dx. Using the Euler method, Eq. (1)
may be converted into the following form [4]. For the internal grids,

Ti, j+1−Ti, j
Dt

=

1 Ti+1, j−Ti, j
( 1
2ai+1, j
)+( 12ai, j)
2−1 Ti, j−Ti−1, j

( 12ai, j)+(
1

2ai−1, j
)
2

Dx2
(2)

where index i represents grid location, and index j denotes the time level.
Time is indexed such that tj+1=tj+Dt for uniform fixed time step, Dt.
For the back surface of the slab, an adiabatic condition is assumed,

and the corresponding equation is given as

Tn, j+1−Tn, j
Dt

=

−1 Ti, j−Tn−1, j
( 12an, j)+(

1
2an−1, j

)
2

Dx2
(3)

For the surface irradiated by a laser pulse, the following relation can be
given,

T1, j+1−T1, j
Dt

=

1 T2, j−T1, j
( 12a2, j)+(

1
2a1, j
)
2

Dx2
+fj, (4)

where fj represents the intensity of the laser pulse at time level j. Equations
(2) to (4) were solved by a FORTRAN90 program with double precision.
Dx and Dt are determined so as to satisfy aDt/Dx2 [ 1/2 for thermal dif-
fusivity ai, j of any element at any time in order to avoid instability of
numerical calculation.
For the calculated temperature response curve, the thermal diffusivity,

a, is determined. When the thermal diffusivity of the sample is given by the
function of temperature, a=g(T), we can derive an inverse function,
T=g−1(a). The effective temperature and effective temperature rise are
given by, g−1(a) and Teff=g−1(a)−T0, respectively.
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3. CALCULATION AND RESULTS

3.1. Solution for a Normalized System

The temperature response of the back surface of the sample with con-
stant thermal diffusivity is given in normalized form as follows:

Tnorm=1+2 C
.

m=1
(−1)m exp(−(mp)2 tnorm) (5)

where Tnorm is the normalized temperature rise of the back surface defined
by (T−T0)/TM and tnorm is the normalized time defined by ta/d2. TM is the
maximum temperature rise of the back surface from T0. This equation
shows that the temperature of the back surface reaches half of the
maximum temperature rise when the normalized time, tnorm, is 0.1388 [1].
The thermal diffusivity, a, is usually estimated from the measured time to
reach half of the maximum temperature rise using the following equation:

a=0.1388d2/t1/2 (6)

where d is the sample thickness.
In order to analyze the temperature response of the sample whose the

thermal diffusivity is temperature dependent, some related physical prop-
erties are normalized as follows.

xnorm=x/d, tnorm=ta0/d2, t1/2, norm=t1/2a0/d
2, Tnorm=(T−T0)/TM,

Dxnorm=Dx/d, Dtnorm=Dta0/d2, anorm=a/a0,

where a0 is the thermal diffusivity at the temperature, T0, before laser
heating.
To simplify the expressions, the suffix norm indicating a normalized

variable is omitted in the following. Equations (1) to (4) can also be applied
to derive the normalized temperature response by giving a new meaning
of each variable. In the case of a=1, the solution of Eqs. (1) to (4) gives
the temperature response of the sample with a temperature-independent
thermal diffusivity. When the pulse width represented by fj in Eq. (4) is
sufficiently short, the solution with a=1 provides the normalized temper-
ature rise of Eq. (5).
The linear temperature dependence of thermal diffusivity may be

described in the following form with a constant c:

a=1+cT (7)
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Here the constant c may be described by TM“(a/a0)/“T in the unnor-
malized form. This means the thermal diffusivity increases by a factor of 2
when the value of TM and c are assumed to be 2 K and unity, respectively.
It should be kept in mind that thermal diffusivity values of all elements are
positive for any time interval in calculations.
Considering these requirements, the temperature response curves were

calculated for five cases with c=−0.01, −0.001, 0.01, 0.1, and 1.
The laser intensity function, fi, describing the absorbed laser irradia-

tion by the sample is given in the following form so as to satisfy the condi-
tion where TM is unity and the pulse width is zero (absolute instantaneous
heating) for DtQ 0.

fj=˛
n (j=1)

0 (j ] 1) (8)

The calculated temperature response curves are shown in Fig. 1. From the
normalized time, t1/2, to reach half of the maximum temperature rise, the
apparent normalized thermal diffusivity value may be obtained by Eq. (6)
as a=0.1388/t1/2. The inverse function of Eq. (7) is T=(a−1)/c. Then,
the effective temperature rise, Teff, can be estimated from Eqs. (6) and (7).

Teff/TM=(0.1388/t1/2−1)/c (9)

The results are summarized in Table I. It can be seen that the uncertainty
in the numerical calculation becomes smaller for a larger value of n and

Fig. 1. Normalized temperature response curve showing the
linear temperature dependence of thermal diffusivity.
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Table I. Normalized Effective Temperature Rise Teff a

c n Dt t1/2 Teff/TM

−0.01 40 10−4 0.1403 1.079
40 10−5 0.1404 1.108
80 10−5 0.1405 1.194
80 10−6 0.1405 1.195

−0.001 40 10−4 0.1388 −0.040
80 10−5 0.1389 0.860
160 10−5 0.1389 1.002
320 10−6 0.1389 1.072
640 10−6 0.1390 1.084

0 10 10−4 0.1371
20 10−5 0.1384
40 10−4 0.1386
40 10−5 0.1387
40 10−6 0.1387
80 10−5 0.1388
80 10−6 0.1388
80 10−7 0.1388
160 10−5 0.1388
160 10−6 0.1388
160 10−7 01388
320 10−6 0.1388
320 10−7 0.1388
320 10−8 0.1388
640 10−6 0.1388
640 10−7 0.1388
640 10−8 0.1388

0.01 40 10−4 0.1370 1.282
80 10−5 0.1372 1.197
160 10−6 0.1372 1.183
320 10−6 0.1372 1.181
320 10−6 0.1372 1.181
640 10−7 0.1372 1.181

0.1 40 10−5 0.1251 1.099
80 10−6 0.1251 1.098
160 10−6 0.1251 1.098
320 10−7 0.1251 1.098
640 10−8 0.1251 1.098

1 10 10−4 0.0715 0.942
20 10−5 0.0711 0.953
40 10−6 0.0709 0.959
80 10−6 0.0708 0.961
80 10−7 0.0708 0.961
160 10−8 0.0707 0.962
320 10−8 0.0707 0.962

a In this table, values are normalized as follows: c: TM “(a/a0)/“T, Dt: Dta0/d2, t1/2: t1/2a0/d2,
Teff: Teff/TM.
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smaller Dt values. The calculations for different values of n and Dt are
carried out to evaluate the convergence for a given c. The normalized time
for half the maximum temperature rise, t1/2, should be 0.1388 for the case
where c is zero. The value of t1/2 converges asymptotically to a constant
value with decreasing Dt and increasing n as shown in the results of
Table I.
The present calculation is made for a nonlinear system and, conse-

quently, the normalized values are not identical to those of the different
conditions. It is emphasized here that the values of Teff/TM are in the range
between 1.1 and 1.2 over the wide range of c from −0.01 to 0.1. The
temperature rise of the back surface of the sample is known to be several
degrees under typical experimental conditions for the laser flash method,
and, hence, the absolute value of c is small. For these reasons, it may be
safely concluded that the effective temperature rise, Teff, can be approxi-
mated by the maximum temperature rise at the back surface of the
sample, TM.

3.2. Solution for a Real System

Thermal diffusivities of materials frequently show a nonlinear depen-
dence on temperature, and the laser pulse usually has a finite width. Glassy
carbon is considered to be a good example, because its thermal diffusivity
is available over a wide temperature range and its nonlinearity is well rec-
ognized. For this reason, the temperature response curve of glassy carbon
GC-20 [5] was estimated when applying the finite pulse heating conditions.

Fig. 2. Thermal diffusivity of glassy carbon GC-20 [5].
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Figure 2 shows the thermal diffusivity of glassy carbon of GC-20 measured
by the laser flash method. These values have been corrected for the tem-
perature rise effect by the extrapolating to the value where the laser inten-
sity is zero and are represented in the following form as a function of tem-
perature in the temperature range from room temperature to 1800 K.

aGC=1.239×10−9+4.226×10−3/(T+445.8) (10)

As can be seen in Fig. 2, the thermal diffusivity of glassy carbon is charac-
terized by a the large negative temperature dependence from 300 to 1000 K
and subsequently a region with almost no temperature dependence, as well
as a the positive temperature dependence for temperatures higher than
1400 K. To examine such particular features of thermal diffusivity detected
for glassy carbon, the temperature response curves were calculated for six
cases where three T0 values are 300, 750, and 1100 K with two TM values of
10 and 2 K. The time interval, Dt, the number of elements, n, and the
sample thickness, d, were given by 10−6 s, 500, and 4×10−3m, respectively.
The laser pulse intensity was assumed constant with a duration of 1 ms.
The laser intensity, fj, is given as follows.

fj=˛
nTM/103 (1 [ j [ 103)

0 (103 < j)
(11)

The effective thermal diffusivity, aeff, can be estimated from the calculated
temperature response curve using Eq. (12).

aeff=0.1388d2/t1/2 (12)

Azumi and Takahashi [6] reported that the effect of the laser pulse
width can be excluded when the moment of the intensity of the laser beam
as a function of time is set to a starting point of the time. Therefore, the
origin of time for the present analysis is set at the center of the laser pulse
duration time, i.e., 0.5 ms to calculate t1/2 in Eq. (12). Then, the effective
temperature rise, Ta, eff, is calculated from aeff by assuming aGC=aeff at
temperature T0+Ta, eff.
The results are summarized in Table II together with information

about the highest sample temperature, Tmax, obtained in this calculation.
The range of the calculations is Tmax < 1800K. A difference between Tmax
and T0 larger than 500 K is obtained for the case of TM=10K. However, it
is important to note that the values of Ta, eff are below 12 K for all cases.
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Table II. Effective Temperature Rise for Thermal Diffusivity of GC-20

T0 TM t1/2 aeff Tmax Ta, eff Teff
(K) (K) a (s) (10−6 m2 · s−1) (K) (K) (K)

300 2 aGC(T) 0.3687 6.024 414 2.23 ˇ 2.3
300 2 aGC(T0) 0.3678 6.039 410 −0.11
300 10 aGC(T) 0.3722 5.967 920 11.42 ˇ 11.5
300 10 aGC(T0) 0.3678 6.039 850 −0.11
750 2 aGC(T) 0.4980 4.460 879 2.04 ˇ 2.3
750 2 aGC(T0) 0.4975 4.464 877 −0.29
750 10 aGC(T) 0.4997 4.444 1411 11.18 ˇ 11.5
750 10 aGC(T0) 0.4975 4.464 1386 −0.29
1100 2 aGC(T) 0.5422 4.096 1233 1.46 ˇ 2.3
1100 2 aGC(T0) 0.5420 4.097 1232 −0.87
1100 10 aGC(T) 0.5428 4.091 1766 10.38 ˇ 11.2
1100 10 aGC(T0) 0.5420 4.097 1762 −0.87

In this work, the temperature response curves are also calculated using
the values of thermal diffusivities of aGC at T0, aGC(T0) under the same
condition. This corresponds to the case where the temperature dependence
is not considered. The effective temperature rise for this case is represented
by the value for a=aGC(T0). It may be noteworthy that the value of Teff for
aGC(T0) should be zero when the numerical error is considered to be
negligibly small. On the other hand, the absolute value of the apparent
effective temperature rise derived by the calculation, Ta, eff, for aGC(T0)
becomes larger at a temperature T0 above 1000 K. This is attributed mainly
to the relatively small value of the temperature dependence of glassy
carbon in that region. With these facts in mind, we introduce the tempera-
ture difference between the apparent effective temperature rise for aGC(T0)
and that of the actual temperature dependence, aGC(T), by providing an
expression for the effective temperature rise Teff.
This effective temperature rise, Teff, lies in the range between 1.1TM and

1.2TM. These results undoubtedly agree well for the case where a linear
temperature dependence of thermal diffusivity is assumed. As shown in
Fig. 2, the nonlinearity of thermal diffusivity for glassy carbon is well rec-
ognized. However, the present results clearly suggest that the effect of such
nonlinearity is not so significant in estimating the thermal diffusivity value
from the measured temperature response using the laser flash method. This
is because the high temperature rise occurs in the very limited time and
space region only. Therefore, we could use a rather simple method for
which the maximum temperature rise, TM, at the back surface of the sample
is considered to be equal to the effective temperature rise, Teff.
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4. CONCLUDING REMARKS

The effective temperature rise has been estimated by the finite differ-
ence method in order to determine the sample temperature corresponding
to the thermal diffusivity measurement using the laser flash method. The
calculation was also made in the case of glassy carbon whose thermal
diffusivity shows a nonlinear temperature dependence. In conclusion, the
effective temperature rise Teff induced by laser irradiation is well approxi-
mated by a value of about 1.1 to 1.2 times that of TM, where TM is the
maximum temperature rise of the back surface of the sample. Considering
that TM is several degrees in the typical experimental conditions, we could
use the useful and simple relation that the effective sample temperature is
given by T0+TM in the thermal diffusivity measurement by the laser flash
method.
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